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1. INTRODUCTION

The ignition of gun propellant occurs when hot primer gases come into contact with the exposed

surfaces of the propellant. Thermal energy is conducted into the propellant and combustion occurs at

points where the local ignition temperature is reached. As the propellant begins to burn, combustion

products are given off which raise the ambient chamber pressure. The regression rate or burn rate of the

propellant is observed to be a strong function of pressure.

One might argue that propellant burn rate should be viewed as an intrinsic property of a particular

propellant formulation (i.e. chemical composition). However, propellants with identical chemical

composition could have different "intrinsic" burn rates if they possess different microstructural fabrics.

This is narticularly true if the propellants are manufactured by different processes. For example, one

might measure different burn rates in two chemically identica lots of M30 if one lot has a distinctly

higher porosity than the other lot. In reference to pressed HMX explosives, Fifer and Cole' distinguish

between burn rate as a "fundamental property of explosive materials" and regression rate which describes

deflagration that is additionally dependent upon the physical properties of the charge such as: porosity,

permeability, and grain size. In this research, the term apparent burn rate is considered synonymous with

Fifer and Cole's regression rate. If the porosity present in a particular propellant is interconnected and

forms a surface area network along which hot combustion gases can infiltrate then regression rates should

be greater than for chemically identical, less permeable propellant. Such materials would have high gas

or "flame" permeabilities. Propellant permeability would also increase through fracture damage induced

by a rapidly fluctuating multiaxial stress field present in the gun tube during firing. An increase in a

propellant's fracture permeability due to deformation enhances the propellant's susceptibility or

vulnerability to convective burning "hot gas infiltration" mechanisms. Many of these concepts are

illustrated in Figure 1 which shows the intrinsic burn rate, R, of a propellant blob with intrinsic

permeability, K. Extrusion manufacturing processes can induce a variety of flaw sizes and distributions

in the propellant, and if the flaws are interconnected the propellant will possess a permeability, Kcd,

(subscript cdl stands for crack density 1). If hot convective gases infiltrate through the crack

permeability during combustion, then the apparent burn rate, R,,,, will be greater than the intrinsic burn

rate of the "Ideal Propellant" (Figure 1).



Ideal Propellant Propellant with Initial Flaw Quasi-static Dynamic

Size and Distribution Tractions Tractions
T T

Ri Rcdl RcC2 Rc 3

disrl fixed

Ri < Rcdl < Rcd2 < Rcd3 Ki < Kcdl < Kcd2 < Kcd3

Figure 1. Intrinsic and Apparent Burning Rate in Solid Propellant with Augmentaton of Burn
Rate as a Function of Loading Rate.

Experimental results of mini closed-bomb tests on damaged propellant grains indicate that fracture

surface area dramatically increases in damaged propellant leading to anomalously high pressurization

rates during combustionZ3 . Many materials do not deform by fracture mechanisms so surface area

changes in the propellant due to fracturing must be partitioned from strain-induced dimensional surface

area changes in the propellant. At present, interior ballistic models (e.g., NOVA, XNOVAKTC)4

calculate the hydrostatic component of the stress tensor (pressure) as well as the axial component of

intergranular solid grain stress as a function of position and time in the gun tube. The magnitude of

intergranular stress is used in a rudimentary model of grain fracture. The ultimate aim of the present

research is to establish a unique relationship, if one exists, between the conditions necessary for

propellant failure (i.e., a failure criterion which is often couched in terms of stress or strain invariants,

or a critical energy release rate) and time-dependent surface area evolution in the propellant.

The present research examines the effects of strain rate, temperature, and percent axial strain on the

combustion characteristics of single grain specimens of M30 and JA2 gun propellant. The choice of these

variables is motivated by the observation that the mechanical response of these materials is rate-sensitive

2
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Figure 2. Comparative Mechanical Response of JA2 and M30 Showing Ductile
Workhardening JA2 Behavior and Ductile Worksoftening M30 Behavior.

and temperature-sensitive 35 .6 (Figure 2). In addition, observations indicate that the fragmentation size

in a wide variety of materials is loading rate dependent' 8 . Fragment size is generally smaller and more

highly comminuted in materials subjected to dynamic deformation because stress levels are relatively

high throughout the material and cracks initiate and propagate simultaneously. In contrast, fragment size

is larger in materials subjected to quasi-static deformation and only those critically oriented cracks will

begin to propagate. Eventually the propagation paths will intersect and large throughgoing fractures will

develop along which shear displacements occur (Figure 1). Furthermore, we expect the degree of

3



fracture surface area to increase as the axial specimen strain increases. The M30 and JA2 propellants

are chosen since they represent endpoints in material behavior insofar as M30 reaches a maximum stress

and deforms by worksoftening mechanisms and JA2 deforms by workhardening mechanisms through-

out its deformation history5 (Figure 2). Briefly, the experimental program will proceed by deforming

propellant grains in uniaxial compression, burning the same single propellant grains in a mini closed-

bomb, and then comparing the combustion characteristics of the damaged propellant relative to the

undamaged propellant in order to determine the relative or hierarchial importance of the test conditions

in controlling combustion.

2. EXPERIMENTAL METHOD

2.1 Specimen Preparation Right circular cylinders of M30 (lot # 67878) and German JA2 (lot #

NC1013180) propellant are cut from seven-perforation granular stock using an Isomet double-bladed

diamond saw. A double-bladed saw is used to cut specimen ends parallel to each other and to help

maintain coaxial deformation with the cylinder axis. Nominal dimensions, masses and chemical

compositions of the M30 and JA2 specimens appear in Table 1 below.

Table 1. Nominal Percent Chemical Compositions and Dimensions of JA2 and M30 Propellants.

Propellant JA2 M30

Component % %

Nitrocellulose 59.0 28.0

Nitroglycerin 15.0 22.0

Nitroguanidine 0.0 48.0

Ethyl Centralite 0.0 2.0

Diethylene-

Glycol Dinitrate 25.0 0.0

Akardit II 1.0 0.0

NC Nitration Level 13.0 12.6

Length (mm) 10.70 10.80

Diameter (mm) 8.80 7.15

Perforation Diameter (mm) 0.508 0.711

Mass (gin) 0.99 0.65

4



The inert lubricant, molybdenum disulfide, MoS2, is applied sparingly to the specimen ends since it

is found that the variability in mechanical response is reduced in compression testing of these materials

when the specimen ends are lubricated 6.

2.2 Servohydraulic Test Apparatus The high rate 810 MTS material test system (Figure 3) consists

of a conventional two-pole press with a servohydraulically actuated ram that operates from quasi-static

velocities to a maximum velocity of about 12 m/sec; the maximum velocity imparts a maximum strain

rate of 1200 sec' on a 10 mm long specimen. A Thermotron conditioning oven/refrigerator surrounds

both upper and lower pistons and permits temperature testing from -85 to 90 degrees Celsius. Specimens

are uniformly heated and thermally conditioned at the testing temperature for at least 30 minutes before

testing. Uniaxial compression tests are performed at constant strain rate by computercontrol of the piston

velocity via feedback from an externally mounted displacement transducer (LVDT). Force measure-

ments are made with a 60 kN quartz piezoelectric force gage that is mounted on the upper moving piston.

Apparatus stiffness is on the order of 97 kN/mm. A more complete description of the servohydraulic

apparatus can be found in Gazonas5.

Actuator

Impact Bell

Specimen
, - FStage

Impact Cone

Shock Absorbing
Piston & Cylinder

Figure 3. Servohydraulic Apparatus with Upper Bell and Impact Cone Piston Assembly.
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The raw force and displacement data are acquired, stored and analyzed using an IQ-300 multichannel

processing digital oscilloscope. The raw force and displacement data are reduced to engineering stress

versus strain by normalizing to initial specimen area and length, respectively. After the data are analyzed,

a variety of mechanical property parameters and pertinent test information are transferred to a Compaq

286 personal computer via RS232 communications port and imported to a DBASE III Plus database

library. A total of 31 fields are stored and include propellant I.D., lot, date, compressive modulus, stress

and strain at yield, energy absorbed at fixed strain levels from .025 to .25, specimen dimensions, test

temperature, strain rate, as well as a character array for a physical description of the deformed propellant.

2.3 Mini Closed-Bomb A new 7.8-cc mini closed-bomb, designed at BRL and manufactured at

Harwood Engineering Company, is used to burn the deformed propellant specimens (Figure 4). The

ignition primer for these tests consists of 0.2 gins of black powder which is ignited via electric match.

Chamber pressure is monitored as a function of time at a sampling frequency of .01 megahertz using a

100-kpsi quartz piezoelectric pressure gage that transmits charge-amplified signals to a Nicolet digital

oscilloscope. The voltage versus time data are stored on 5.25" floppy diskettes and converted to ASCII

78-cc Mini Closed-Bomb Chamber Si nal Amplifier

- I-,- 00-kps) Piezoelectric

- Pressure Transducer

Oscilloscope

, , Single Grain Propellant i gm

Black Powder 0.2 gm )

<a0
PC -Analysis '00 r Floppy Diskette

Figure 4. Mini Closed-Bomb Data Reduction and Analysis.
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format for bum rate analysis using the BRLCB program9. A more complete description of the 7.8-cc mini

closed-bomb will appear in a companion report.

The relationship between the mass generation rate, dm/dt, surface area, A, and the burn rate, R, of

the propellant is given by:

dm/dt = rho * A(t) *R (1)

where,

m = gaseous mass (g)

rho = propellant density (g/cc)

A = time dependent surface area (sq. cm)

R = bum rate (cm/sec)

An empirical relationship for the burn rate, R, is given by:

R = a * P' (2)

where, P, is pressure (MPa), and a and n are empirically determined constants. The mass generation rate

on the left-hand side of Equation 1 is a function of the gas pressurization rate, bomb volume, temperature,

propellant physical properties and thermochemical constants 1'. The time dependent area, A(t), in

Equation I is an explicit function of the initial propellant geometry and the depth burnt, so that one can

explicitly solve for the burn rate, R. Baseline burn rate versus pressure plots (Equation 2) for M30 and

JA2 are highly reproducible (Figure 5) and there is good agreement between plots of burn rate versus

pressure for the 7.8-cc mini closed-bomb (single grain) and the 200-cc closed-bomb (50-60 grains)

(Figure 6). The remarkable agreement between single-grain and multiple-grain burn rate results might

be attributed to the relative rapid rate of flamespreading (20 times linear burn rates) observed in linear

arrays of LOVA propellant11.

3. EXPERIMENTAL DESIGN

The "classical" one-factor-at-a-time12 test program proceeds by testing over the operating range of

a particular variable, while the other variables are held constant at a value within their respective ranges.

The test program can become time consuming and costly if the effects of a number of variables are to

be investigated. Furthermore, if nonlinear interaction effects are present among the variables, one-

factor-at-a-time experimentation will not detect them. For example, suppose that a series of tests are

7
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Figure 5. Reproducibility of Burn Rate versus Pressure in Baseline Undamaged
M30 and JA2. Coordinate Axes are Log Base 10.
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M30 Burn Rate vs. Pressure Comparison
between 7.8-cc bomb and 200-cc bomb.

100

E

10 x 200-cc bomb (56 grains)

cxxc

£ 7.8-cc bomb (I gram)

1010 100 1000

Pressure (MPa)

JA2 Burn Rate vs. Pressure Comparison
between 7.8-cc bomb and 200-cc bomb.

100

20K 7 --cc bobo b ( gran)

10100 1000

Pressure (MPa)
Figure 6. Comparison of Burn Rate versus Pressure between 7.8-cc Mini Closed-Bomb

and 200-cc Closed-Bomb for M30 and JA2 Propellants. Coordinate Axes are
Log Base 10.
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conducted where a response, Y, is measured at various temperatures in order to find the temperature, To,

at which the response is a maximum (Figure 7a). If the temperature is then held constant at T=T ° and

a second series of tests are conducted where the response is measured at various relative humidities

(Figure 7b) one could also determine the relative humidity, H., at which the maximum response occurs

and incorrectly assume that the maximum response is at T=T o, and H=H ° (at x in Figure 7c); the actual

interaction response surface could be highly nonlinear and one has a better chance of identifiying the

maximum response (within the 50 contour in Figure 7c) with a suitably designed testing or sampling

strategy. The simplest sampling strategy involves testing at the factor extremes, "high" and "low", the

limits of which are decided upon by the experimenter who is guided by intuition, theory, or limitations

of the physical process.

In this research, a 2' (factorial) experimental design 2 is used to determine the effects of the

continuous variables strain rate, temperature, and percent axial strain, and the discrete variable propellant

20 Tests + 20 Tests = 40 Tests

I max @TTo ~ Mal C&11".,T =To
~40 - NJ 4

30 -3

20 20

Temperature Humidity

a. Response vs Temperature. b.1 Response vs Humidity.

contours 20

Thigh -
-4..

a T=T 0TIT1  w-- ( --

lo-.

/ c"tO 2Tests+2Tests = 2 Tests

Humidity 1
low high

c. Response Interaction Between Temperature and Humidity.

Figure 7. Detection of Nonlinear Interactions using "Classical" and "Statistical"
Design Approaches.
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Table 2. 21 Factorial Experimental Design Randomized Test Sequence.

Test # Material Temperature (OC) Strain Rate (1/s) % Strain

1 JA2 60 .01 10
2 M30 0 .01 10
3 JA2 0 100 10
4 M30 60 100 10
5 M30 0 100 35
6 JA2 60 100 35
7 JA2 0 .01 35
8 M30 60 .01 35
9 1A2 60 100 10

10 JA2 0 .01 10
I1I JA2 60 .01 35
12 M30 0 100 10
13 M30 60 100 35
14 M30 60 .01 10
15 M30 0 .01 35
16 JA2 0 100 35

M30 JA2

X2~~~X = %StrinX2 Stai

(Lo.L,Lo)j------------(HiHiLo) (oLL)------------(HiL~,Lo)

X3 = Temperature -/ X3 = Temperature

(Lo,Lo,Hi (io,) (Lo,Lo,Hi;(iLoIi

Figure 8. Cube Plots Showing Hi-Lo Experimental Endp~oint Combinations
for a 2' Test Desian.



type on apparent burn rate. The design has four independent controllable variables tested at two levels

(low and high). The total number of low/high combinations is 24 or sixteen experiments. Instrumental

carryover error is minimized by conducting the experiments in random order (Table 2).

One can visualize the design endpoin.s in the 2' experimental design using cube plots where each

cube vertex represents a particular combination of "low" and "high" test conditions. Two cube plots are

needed to represent the sixteen experiments in our 2' design; one cube represents all M30 tests and the

one cube represents all JA2 tests (Figure 8). A desirable feature of the family of factorial designs is the

ability to accommodate both continuous and discrete variables. In addition, the total number of tests can

be significantly reduced using a factorial design. Using a "classical" test design, if a response, Y, is

measured at four temperatures and relative humidities, then forty tests are required (assuming five

replicate tests are conducted at each temperature and relative humidity). In contrast, a 22 factorial design

requires only four tests at high and low tempe, dtures and relative humidities (Figure 7c). The actual num-

ber of tests required at each experimental condition, using the "classical" test approach, is directly

proportional to the variance of the measured quantity and inversely proportional to the required

tolerance 3 . In a subsequent section it is shown that the combustion response is calculated at each

experimental design endpoint using a second degree polynomial equation.

After the experimental design sequence is executed, the damaged propellant grains are burned in the

7.8-cc mini closed-bomb and the combustion characteristics are analyzed using BRLCB9 . An overview

of the experimental results appears in the next section.

4. EXPERIMENTAL RESULTS

4.1 Propellant Mechanical Properties This section outlines the mechanical properties obtained as

a result of uniaxial compression testing on M30 and JA2 propellants. The M30 and JA2 gun propellants

behave in a macroscoDically ductile fashion by sustaining a maximum of 35 percent axial shortening over

the temperature range (0 to 60 degrees Celsius) and strain rate range (.01 to 100 sec-'). However, JA2

continually workhardens throughout the deformation history whereas M30 reaches a maximum stress

and subsequently worksoftens throughout the deformation history (Figure 2). There are no observable

fractures in any of the JA2 specimens (Figure 9), however, M30 specimens 5, 8, 13 and 15, (all shortened

35 percent) initially develop axial cracks which have a tendency to shear and kink with increasing axial

12
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Figure 9. Damaged Propellant Grains According to Conditions in Table 2. Baseline JA2
and M30 are tests 17. 18 and 19. 20 Respectively.

Table 3. Comparative Mechanical Properties for M30 and JA2 Gun Propellant
versus Temperature and Strain Rate.

Material Temp.(OC) S.R. (1s) Modulus (GPa) FaiI.Mod.(GNa) Yield (MPa)l

JA2 0 100 1.18 -.018 40.3

JA2 0 .01 0.55 -.008 12.8

JA2 60 100 0.28 -.020 5.6

JA2 60 .01 0.08 -.005 1.9

M30 0 100 3.23 1.03 118.9

I M30 0 .01 1.68 0.21 51.0

M30 60 100 0.94 0.21 42.0

M30 60 .01 0.18 0.02 14.3

13



displacement. In a later section, it is shown that the combustion characteristics of M30 specimens 5, 8

and 15 deviate significantly from the combustion characteristics of baseline undamaged propellant.

The compressive modulus and yield stress in these materials increase as temperature decreases and

strain rate increases, although temperature dominates the effect over the test condition range. In addition,

the absolute value of the failure modulus3 (negative slope of post-yield stress versus strain curve)

increases as temperature decreases (except for JA2) and strain rate increases although, strain rate

dominates the effect over the test condition range (Table 3).

4,2 Propellant Combustion Characteristics This section outlines the results of the bum rate analysis

obtained as a result of mini closed-bomb pressure chamber tests on damaged and baseline M30 and JA2

propellants. A complete description of the PC-based bum rate analysis program can be found in Oberle

and Kooker9. Plots of apparent burn rate versus pressure reveal that the combustion response of damaged

JA2 is not nearly as variable as the combustion response of damaged M30 over the range of test

conditions (Figure 10). The vertical line in Figure 10 depicts the lowest pressure over which the bum

rate versus pressure response is linear for both propellants. The apparent burn rates at this pressure are

used in a subsequent section to characterize the combustior response of the propellant as a function of

strain rate, temperature, and percent axial strain. An empirical relation between apparent burn rate, R,

and pressure, P, (Equation 2) is fit to the data (Figure 10), and the coefficients, n versus a, are plotted

for the sixteen experiments and four baseline tests (Figure 11). It is interesting to note that n is a power-

law in a for damaged and undamaged propellant, where a represents the apparent burn rate at I MPa

pressure and n is the pressure power-coefficient. The wider range in n versus a values for the fracture-

damaged M30 propellant illustrates the greater variability in burn rate response relative to JA2 propellant

over the range of test conditions.

5. DISCUSSION

An apparent burn rate response surface, R, is generated to determine the relative linear and nonlinear

contributions of the independent variables. In this work, the empirical apparent burn rate response

surface, R, is written as a second-order polynomial expansion of the four independent variables,

(X,=propellant, X,=strain rate, X3=% strain, and X4=temperature) as:

14
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Figure 10. Apparent Burn Rates of Damaged JA2 and M30 Propellants, Coordinate
Axes are Log Base 10.
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Figure 11. Comparison of Burn Rate Coefficients. n and a. (Equation 2) for Damaged and
Undamaged (Baseline) Propellant. The Coefficients are Determined for the
Range from 25 % to 75 % Maximum Pressure. Coordinate Axes are LoLs Base 10.
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R (20 Nipl) = bo + bX + b2 X2 + b3X3 + b4X4 + b12XIX 2 + b13XIX 3 + b 14XIX4

+ b23X2X3 + b24X2X4 + b34X3X4

(3)

or, more generally as:

q q q

R =b + X biXi + X bIJX X

t=1 i=1 j >i

n

where, b = R!n and q = number of factors, n = total no. of experiments.
i = 1

The b, quantify the main effects of the independent controllable variables. The b,, terms describe the

pairwise interaction effects of the independent variables. The intercept term, b,, is simply the arithmetic

mean of all the recorded responses. The second-order polynomial model is fit to the data using standard

least squares regression techniques. Th2 numerical values of the independent variables, X, are standard-

ized (nondimensionalized) to range from +1 for "high" '-"perimental test conditions, and -1 for "low"

experimental test conditions. Nondimensionalizing the variables allows one to rank the coefficients (de-

termined by least squares regression analysis) by magnitude to determine the relative contribution of

each variable to the measured response. An inspection of the coefficients in the second-order polynomial

expansion will permit one to determine the relative contributions of each of the independent variables

to the burn rate of M30 and JA2 gun propellants. Thus, a hierarchy is established which ranks the relative

importance of the independent variables over the test range.

The apparent burn rate at 20 MPa is used as the combustion response, R. The burn rate at 20 MPa

is chosen to characterize the combustiun response because the log burn rate versus log pressure response

for both propellants is relatively linear at this pressure. A regression analysis1 4 is performed and the

coefficients and their relative rankings appear in fable 4. The results of the regression analysis indicate

that the interaction propellant type*strain is the most significant factor controlling the bum rate at 20

MPa. The second most significant factor is the propellant type. The third, fourth, and fifth most

significant factors (at the alpha = .05 confidence level) are the percent axial strain, deformation

temperature, and interaction strain *temperature, respectively. The apparent burn rates of these propel-

lants are virtually independent of the deformation strain rate. This result is surprising insofar as in a

16



Table 4. Coefficients and Rankings for Predicting the Apparent Bum Rate (@ 20 MPa) of M30
and JA2 Propellants (Combined Analysis). The Coefficients Ranked 1,2,3,4, and 5 are
Significant at the Alpha = .05 Confidence Level.

Factors Coefficients Rank

Propellant -.2820 2
Strain Rate .0030 10
Strain .2130 3
Temperature -.2130 4
Propellant*S. R. .0660 7
Propellant*Strain -.2900 1
Propellant*Temp. .1330 6
Strain Rate*Strain .0150 9
Strain Rate*Temp. -.0580 8
Strain*Temp. -.1720 5

Constant 2.365
R-square(adj.) 0.822
RMS Residual 0.250

Table 5. Coefficients and Rankings for Predicting the Apparent Burn Rate
(@ 20 MPa) of M30 and JA2 Propellants (Separate Analysis).

Factors Coefficients Ranks

M30 JA2 M30 JA2

Strain Rate -.063 .070 5 4
Strain .502 -.077 1 2
Temperature -.342 -.083 2 1
Strain Rate*Strain -.031 .062 6 5
Strain Rate*Temp. -. 108 -.007 4 6
Strain*Temp. -.272 -.072 3 3

Constant 2.646 2.083
R-square(adj.) 0.863 0.861
RMS Residual 0.270 0.066
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previous section it is shown that the mechanical response of these propellants, as characterized by the

compressive modulus, yield stress, and failure modulus, is a strong function of the deformation strain

rate over the same test condition range. In addition, theoretical and observational studies of a variety of

materials indicate that fragmentation size is a strong function of loading rate. Fragment sizes tend to be

larger at slow rates of loading and fragment sizes are smaller and more highly comminuted at dynamic

rates of loading'. It is apparent then, that relative to the other independent variables, the apparent burn

rate for these propellants is insensitive to strain rate over the range 102 to 100 sec-1.

Since propellant type is a discrete independent variable, and a dominant factor controlling the

apparent burning rates, an analysis is carried out whereby the regression analysis is performed for each

propellant separately. Table 5 illustrates the results of the separate regression analyses and ranks the

factors as in the previous example. In this analysis however, significance levels are not established

because the estimate of experimental error is associated with only one degree of freedom in the system

(8 data points minus 7 coefficients).

The regression analysis reveals that the apparent burn rate of M30 is dominated by the axial strain

followed by deformation temperature. In contrast, the apparent burn rate of JA2 is dominated by defor-

mation temperature followed by axial strain level. In addition, the apparent burn rate of JA2 decreases

as the strain level increases, yet the apparent burn rate of M30 increases as the strain level increases. This

result is attributed to an increase in fracture-induced surface area in M30 relative to purely dimensional

changes in JA2. Figure 12 illustrates the actual and predicted burn rates for these propellants at 20 MPa

determined using coefficents in Table 5.
4-

- M30

2 4

Actual A.B. R.

Figure 12. Predicted versu Actual Apparent Burn Rates (A.B.R.) in cm/sec
Calculated Using Coefficients in Table 5.
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5.1 Surface Area Analysis In order to determine the amount of fracture surface area generated as

a result of damage, Equation 1 is first solved for surface area, A. A measure of the amount of fracture

induced damage relative to the undamaged baseline propellant is given by the surface area ratio, Sd/Su:

Sd(t)/Su(t) = dmidmu

where, dmd and dm are the incremental masses generated per unit time in the damaged and undamaged

propellants respectively. It is assumed that the burn rates and densities of the damaged and undamaged

propellant are identical. The time dependent surface area ratio is a function of the incremental mass

generation rate, which in turn is a function of the incremental pressurization rate of the chamber. This

measure is useful since it is independent of specimen geometry and reflects changes in damage-induced

surface area relative to the baseline propellant. Surface area ratio plots for all sixteen M30 tests are

illustrated in Figure 13. The plots are partitioned on the dominant factor (percent axial strain)

controlling the apparent burn rate in M30 propellant. The effect of fracture-induced damage is also

illustrated by examining pressurization rate profiles. The maximum pressurization rates for the damaged

M30 (4.5 MPa/msec) are about the same as for undamaged baseline specimens, however for damaged

specimens the maxima occur at earlier times than the undamaged specimens (except for test #13, Figure

14).

Damaged - M30 (10 % Strain) Damaged - M30 (35 % Strain)
6- 6

) 5: 3 5- *

() "* testl"12 cold-fast X 
- t 

u e ' LW

test'1-1 toot-slow 44-
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3 XX

2- 21 X

Tie mec im msc

CV

LOL

0 10 20 30 () ) 10. 7

Time (msec) Time (msec)

Figure 13. Surface Area Ratio Plots versus Time Showing How Percent Axial Strain
Dominates the Apparent Burn Rate of M30 Propelknt,
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The surface area ratio plots can either be plotted as a function of mass fraction burnt, time, or P/Pmax.

The surface area ratio for JA2 remains near unity over the entire spectrum of test conditions and indicates

that over the test range anomalous surface area is not generated in the material relative to the baseline

undamaged propellant (Figure 15). JA2 begins to fracture in uniaxial compression as the temperature

is decreased below the glass transition temperature (-20 degrees Celsius), or as the specimen aspect ratio,

length-to-diameter ratio, increases6. In contrast, the surface area ratio for M30, deformed to 35 percent

axial strain, reaches six times that of the undamaged baseline propellant. Surface area ratios in tests #

5, 8, 13, and 15 depart significantly from unity and this is not surprising since numerous visible cracks

are present in these specimens (Figure 9).

6. CONCLUSIONS

1) The use of a well designed testing approach maximizes the information obtainable concerning the

sensitivity of combustion characteristics of M30 and JA2 gun propellants to the effects of strain rate,

temperature, and percent axial strain, while simultaneously minimizing the number of tests involved.

2) Experimental design methods can provide an empirically derived model for quantifying factor

effects within the test range and provide a means for establishing a hierarchy of factor effect importance.

3) The apparent burn rates of damaged JA2 propellant are relatively unaffected by the induced

deformation. Results of the statistical test design indicate that the apparent burn rate of JA2 at 20 MPa

is primarily delpt:ndent on the deformation temperature.

4) The apparent burn rates of damaged M30 propellant vary considerably and the degree of damage-

induced surface area approaches six times that of the undeformed baseline M30 specimens. Results of

the statistical test design indicate that the appX-ent burn rate of M30 at 20 MPa is dependent primarily

on percent axial specimen strain.
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5) The apparent burn rates for these propellants are relatively insensitive to the deformation strain

rate over the range 10-2 to 100 sec - , yet a number of observational and theoretical studies show that

fragmentation size is a function of loading rate. The observation that the apparent burn rate is insensitive

to deformation strain rate is also surprising given that the mechanical properties of these materials are

strongly strain rate dependent.

6) The insensitivity of the apparent burn rate to strain rate may in part be due to the limited strain

rate range investigated 10-2 to 100 sec' and in part due to the dominance of the other factors, temperature

and percent axial specimen strain. Second-order strain rate effects may be realizable at large specimen

strains.

7) If deformation strain rate does not significantly affect the apparent burn rates of these propellants

(relative to percent axial strain and temperature) then it may not be necessary to determine high loading

rate mechanical properties for these materials. This information is useful for interior ballistic models

which at present only track intergranular stress as a criterion for grain failure.

8) A unique relationship between propellant mechanical properties and propellant combustion

characteristics does not exist for JA2 propellant, since the mechanical properties of JA2 gun propel-

lant change dramatically with temperature and strain rate, while the combustion characteristics

remain relatively uniform. Whether these findings hold for a wider class of propellants still needs to

be determined.
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7. FUTURE WORK

Future work should examine whether the observation that the apparent bum rate is relatively

insensitive to deformation strain rate can be generalized to include a wider class of energetic materi-

als. Uniaxial compression tests on energetic materials whose macrocscopic deformation mecha-

nisms are dominated by fracturing will be performed using statistical design, but under an expanded

strain rate window, the upper limit of which will include dynamic strain rates (10 sec'). If it can be

shown that the combustion of these materials is relatively insensitive to deformation strain rate, then

this will greatly simplify interior ballistic numerical model development, which presently tracks

changes in bed porosity (combining both grain deformations and rigid body motions) and in!trgranu-

lar stress in a rudimentary model of grain fracture.
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